精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx,a∈R.
(1)若0<a<1,求f(x)的单调区间;
(2)若a=0,且f(x1)=f(x2),x1>x2,求证:x1•x2<1.

分析 (1)求导数,利用导数的正负,求f(x)的单调区间;
(2)设$\sqrt{\frac{{x}_{1}}{{x}_{2}}}$=t>1,则原命题等价于lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.构造函数,确定单调性,即可证明结论.

解答 (1)解:f′(x)=$\frac{(ax-1)(x-1)}{x}$,
x∈(0,1),($\frac{1}{a}$,+∞),f′(x)>0,函数单调递增;
x∈(1,$\frac{1}{a}$),f′(x)<0,函数单调递减;
(2)证明:∵f(x1)=f(x2),
∴lnx1-x1=lnx2-x2
∴$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$=1,
x1•x2<1等价于$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$•$\sqrt{{x}_{1}{x}_{2}}$<1.
设$\sqrt{\frac{{x}_{1}}{{x}_{2}}}$=t>1,则原命题等价于lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.
令g(t)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.
g′(t)=$\frac{-{t}^{2}+2t-1}{2{t}^{2}}$<0,
∴g(t)在(1,+∞)上单调递减,
∴g(t)<g(1)=0,即lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),
∴x1•x2<1.

点评 本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确运用导数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xlnx+mx2-m在定义域内不存在极值点,则实数m的取值范围为(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x\;≤\;1\\{(x-a)^2},\;x>1\end{array}$函数g(x)=2-f(x),若函数y=f(x)-g(x)恰有4个零点,则实数a的取值范围是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,设锐角△ABC的外接圆ω的圆心为O,经过A,O,C三点的圆ω1的圆心为K,且与边AB和BC分别相交于点M和N,现知点L与K关于直线MN对称,证明:BL⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是(  )
A.在区间(1,3)内f(x)是减函数B.当x=1时,f(x)取到极大值
C.在(4,5)内f(x)是增函数D.当x=2时,f(x)取到极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a满足x+lgx=2,实数b满足x+10x=2,函数f(x)=$\left\{{\begin{array}{l}{ln(x+1)+\frac{a+b}{2},x≤0}\\{{x^2}-2,x>0}\end{array}}$,则关于x的方程f(x)=x解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.极坐标系中,曲线C1:ρ=2(sinθ+cosθ)与曲线C2:ρ=1交于点 A(ρ1,θ1),B(ρ2,θ2),其中θ1,θ2∈[-π,π).
(I)求ρ12与θ12的值;
(II)求极点O与点A,B组成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x3-6x2+1.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在[-1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\underset{lim}{n→∞}$$\frac{6-2+4-8+…+(-2)^{n+1}}{4+3+9+27+…+{3}^{n}}$=$\frac{32}{15}$.

查看答案和解析>>

同步练习册答案