分析 根据函数g(x)和f(x)的关系,将y=f(x)-g(x)=0转化为f(x)=1,利用数形结合进行求解即可.
解答 解:由题意当y=f(x)-g(x)=2[f(x)-1]=0 时,即方程f(x)=1 有4个解.
又由函数y=a-|x+1|与函数y=(x-a)2 的大致形状可知,
直线y=1 与函数f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x\;≤\;1\\{(x-a)^2},\;x>1\end{array}$ 的左右两支曲线都有两个交点![]()
当x≤1时,函数f(x)的最大值为a,则a>1,
同时在[-1,1]上f(x)=a-|x+1|的最小值为f(1)=a-2,
当a>1时,在(1,a]上f(1)=(1-a)2,
要使y=f(x)-g(x)恰有4个零点,
则满足$\left\{\begin{array}{l}{a>1}\\{a-2≤1}\\{(1-a)^{2}>1}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a≤3}\\{a>2或a<0}\end{array}\right.$,解得2<a≤3.
故答案为:(2,3]
点评 本题主要考查函数与方程的应用,利用条件转化为f(x)=1,利用数形结合以及绝对值函数以及一元二次函数的性质进行求解即可.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{{8\sqrt{5}}}{5}$ | C. | $\frac{{16\sqrt{5}}}{5}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,3) | B. | [-2,3] | C. | (-∞,-2) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com