精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=x2ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若x∈[-2,2]时,不等式f(x)<m恒成立,求m的取值范围.

分析 (Ⅰ)先求出函数的导数,通过解关于导函数的不等式,求出其单调区间即可;
(Ⅱ)先求出f(x)在[-1,2]上的单调性,从而求出函数的最大值,即可求m的取值范围.

解答 解:(Ⅰ)f′(x)=x(x+2)ex
令f′(x)>0,解得:x<-2或x>0,
令f′(x)<0,解得:-2<x<0,
∴函数f(x)的单调递增区间为(-∞,-2)和(0,+∞),递减区间为[-2,0].…(6分)
(Ⅱ)

x-2(-2,0)0(0,2)2
f′(x)0+
f(x)$\frac{4}{{e}^{2}}$单减极小值0单增4e2
…(10分)
因此x∈[-2,2],f(x)的最大值是4e2
∵x∈[-2,2]时,不等式f(x)<m恒成立,
∴m>4e2…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,考查恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知多面体ABCDE中,底面△ABC为等边三角形,边长为2,DE∥AC,AE∥DO,AE⊥面ABC,O为AC的中点,EA=1.
(1)若P为AB的中点,求证:EP∥面BDC;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知e是自然对数的底数,F(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)设T(x)=F(x)-f(x),当a=1+2e-1时,求证:T(x)在(0,+∞)上单调递增;
(2)若?x≥1,F(x)≥f(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xlnx+mx2-m在定义域内不存在极值点,则实数m的取值范围为(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2x2-lnx的递增区间是(  )
A.(-∞,-$\frac{1}{2}$)及(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)及($\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x3-tx2+3x,函数f(x)在区间(1,3)上单调递减,则实数t的取值范围是[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数f(x)的图象过点(0,5),其导函数是f′(x),且满足f′(x)<1-f(x),则不等式exf(x)>ex+4(e为自然对数的底数)的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x\;≤\;1\\{(x-a)^2},\;x>1\end{array}$函数g(x)=2-f(x),若函数y=f(x)-g(x)恰有4个零点,则实数a的取值范围是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.极坐标系中,曲线C1:ρ=2(sinθ+cosθ)与曲线C2:ρ=1交于点 A(ρ1,θ1),B(ρ2,θ2),其中θ1,θ2∈[-π,π).
(I)求ρ12与θ12的值;
(II)求极点O与点A,B组成的三角形面积.

查看答案和解析>>

同步练习册答案