| A. | g(x)=sin(2x-$\frac{π}{3}$) | B. | g(x)=sin(2x+$\frac{π}{6}$) | C. | g(x)=-sin(2x-$\frac{π}{3}$) | D. | g(x)=sin(4x+$\frac{π}{6}$) |
分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式,再利用y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.
解答 解:由函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的图象,
可得A=1,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,求得ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度得到函数g(x)=sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]
=sin(2x+$\frac{2π}{3}$)=sin(-2x+$\frac{π}{3}$)=-sin(2x-$\frac{π}{3}$)的图象,
故选:C.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,还考查了y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,2)内是减函数 | B. | 在(-∞,4)内是减函数 | ||
| C. | 在(-∞,0)内是减函数 | D. | 在(-∞,+∞)内是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com