精英家教网 > 高中数学 > 题目详情
已知x,y满足不等式组
y≤x
x+y≥2
x≤2
,则目标函数z=2x+y的最大值为
 
考点:简单线性规划
专题:数形结合
分析:由约束条件作出可行域,化目标函数为斜截式方程,由图得到最优解,求出最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
y≤x
x+y≥2
x≤2
作可行域如图,

由z=2x+y,得y=-2x+z,
由图可知,当直线y=-2x+z过可行域内的点B(2,2)时,
直线在y轴上的截距最大,即z最大.
∴z=2×2+2=6.
故答案为:6.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

新余市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为(  )
A、17.4元
B、20.4元
C、21.8元
D、22.8元

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x+y+5≥0
x-y≤0
y≤0
,则z=2x+4y+1的最小值是(  )
A、-14B、1C、-5D、-9

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P为⊙O外一点,A在⊙O上,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且∠EDF=∠ECD.
(Ⅰ)求证:EF•EP=DE•EA;
(Ⅱ)若EB=DE=6,EF=4,求EP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)α的定义域是[-1,+∞),其中常数α>0.(注:f′(x)=α(1+x)α-1
(1)若α>1,求y=f(x)的过原点的切线方程.
(2)证明当α>1时,对x∈(-1,0),恒有1+αx<f(x)<α(1+x).
(3)当α=4时,求最大实数A,使不等式f(x)>1+αx+Ax2对x>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+a
x2+bx+1
,x∈[-1,1]是奇函数,求a,b值,并求出f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB,交双曲线于A,B两点,且斜率分别为k1,k2,若直线AB过原点,则k1•k2的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=x2+lnx-ax.
(Ⅰ)当a=3时,求f(x)的单调区间;
(Ⅱ)若f(x)在(0,1)上有极值,求a的取值范围;
(Ⅲ)在(Ⅱ)的结论下,设g(x)=1+x|x-a|(1≤x≤3),求函数g(x)的最大值.

查看答案和解析>>

同步练习册答案