精英家教网 > 高中数学 > 题目详情
9.设x∈Z,A={奇数},B={偶数},若命题p:?x∈A,2x∈B,则其否定为(  )
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

分析 根据已知,结合全称命题否定的定义,可得答案.

解答 解:命题p:?x∈A,2x∈B的否定应为:?x∈A,2x∉B,
故选A

点评 本题考查的知识点是命题的否定,全称命题,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若$θ∈(0,\frac{π}{4})$,化简$\sqrt{1-2sin(3π-θ)sin(\frac{π}{2}+θ)}$=(  )
A.sinθ-cosθB.sinθ+cosθC.cosθ+sinθD.cosθ-sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知中心在原点的椭圆E的左焦点F(-$\sqrt{3}$,0),右顶点A(2,0),抛物线C焦点为A.
(1)求椭圆E与抛物线C的标准方程;
(2)若过(0,1)的直线 l 与抛物线C有且只有一个交点,求直线 l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=2lnx上的点到直线2x-y+3=0的最短距离为(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且过点A($\frac{3}{2}$,-$\frac{1}{2}$).
(1)求椭圆的方程;
(2)已知y=kx+1,是否存在k使得点A关于l的对称点B(不同于点A)在椭圆C上?若存在求出此时直线l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,已知a4+a8=16,则a2+a6+a10=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过抛物线y=x2焦点的弦的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U={1,2,3,4,5,6,7,8},A,B均为U的子集,且A∩(∁UB)={1,8},(∁UA)∩B={2,6},∁U(A∪B)={4,5,7},则集合A={1,3,8}.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,A,B为抛物线y2=4x上的两点,F为抛物线的焦点且FA⊥FB,C为直线AB上一点且横坐标为-1,连结FC.若|BF|=3|AF|,则tanC=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案