分析 将参数方程化为普通方程,可知两曲线分别为圆与直线,则圆C1上的点到直线C2的最短距离是圆心到直线的距离减去半径,即可得到答案.
解答 解:将曲线C1$\left\{\begin{array}{l}{x=\sqrt{7}cosφ}\\{x=\sqrt{7}sinφ}\end{array}\right.$(φ为参数,φ∈R)化为普通方程x2+y2=7,
将曲线C2 ρcosθ+ρsinθ=4(ρ,θ∈R)化为普通方程x+y=4,
∴圆C1上的点到直线C2的最短距离是圆心到直线的距离减去半径,
即要求的最短距离=$\frac{|0+0-4|}{\sqrt{1+1}}$-$\sqrt{7}$=2$\sqrt{2}$-$\sqrt{7}$.
故答案为:2$\sqrt{2}$-$\sqrt{7}$.
点评 本题考查了以参数方程形式表示的曲线的之间的最短距离,可以转化为普通方程表示的曲线之间的最短距离.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{5}$ | B. | -1 | C. | -$\frac{1}{5}$ | D. | $\frac{11}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一个点 | B. | 双曲线 | C. | 椭圆 | D. | 抛物线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com