精英家教网 > 高中数学 > 题目详情
7.已知两点A(-2,0),B(3,1),如果动点P满足|PA|=2|PB|,则点P的轨迹所围成的图形的面积等于$\frac{104}{9}$π.

分析 设P点的坐标为(x,y),利用两点间的距离公式代入等式|PA|=2|PB|,化简整理得(x-$\frac{14}{3}$)2+(y-$\frac{4}{3}$)2=$\frac{104}{9}$,所以点P的轨迹是一个圆,求出圆的半径利用圆面积公式,即可算出所求图形的面积.

解答 解:设P点的坐标为(x,y),
∵A(-2,0)、B(3,1),动点P满足|PA|=2|PB|,
∴$\sqrt{(x+2)^{2}+{y}^{2}}$=2$\sqrt{(x-3)^{2}+(y-1)^{2}}$,平方得(x+2)2+y2=4[(x-3)2+(y-1)2],
化简得(x-$\frac{14}{3}$)2+(y-$\frac{4}{3}$)2=$\frac{104}{9}$,
∴点的轨迹是以($\frac{14}{3}$,$\frac{4}{3}$)为圆心、$\sqrt{\frac{104}{9}}$为半径的圆,
因此,点P的轨迹所包围的图形的面积S=π•($\sqrt{\frac{104}{9}}$)2=$\frac{104}{9}$π.
故答案为:$\frac{104}{9}$π.

点评 本题给出动点P满足|PA|=2|PB|,求动点的轨迹方程、轨迹所包围的图形的面积.着重考查了两点间的距离公式、圆的标准方程、圆的面积公式和动点轨迹的求法等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若a+2,a+3,a+4是钝角三角形的三边长,则a的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线8kx2-ky2=8的一个焦点为(0,3),则k的值为(  )
A.$\frac{{\sqrt{65}}}{3}$B.$-\frac{{\sqrt{65}}}{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=(  )
A.{x|0<x<1}B.{x|0<x<2}C.{x|-1<x<1}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆x2+y2-4x-4y-10=0上到直线x+y=0的距离为$2\sqrt{2}$的点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在边长为2的正方体ABCD-A1B1C1D1中,E、F、M分别是棱AB、BC、DD1的中点,
(1)求证:BM⊥平面B1EF;
(2)(理科) 求二面角M-B1E-F的余弦值.
(文科) 求直线ME与平面B1EF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线$\left\{\begin{array}{l}{x=\sqrt{7}cosφ}\\{x=\sqrt{7}sinφ}\end{array}\right.$(φ为参数,φ∈R)上的点到曲线ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距离是2$\sqrt{2}$-$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在同一坐标系中,将曲线y=2sin3x变为曲线y=sinx的伸缩变换是(  )
A.$\left\{{\begin{array}{l}{x=3{x^/}}\\{y=\frac{1}{2}{y^/}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3{x^/}}\\{y=2{y^/}}\end{array}}\right.$D.$\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=2y}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定点P在定圆O圆内或圆周上,圆C经过点P且与定圆O相切,则动圆C的圆心的轨迹是(  )
A.两条射线或圆或椭圆B.圆或椭圆或双曲线
C.两条射线或圆或抛物线D.椭圆或双曲线或抛物线

查看答案和解析>>

同步练习册答案