精英家教网 > 高中数学 > 题目详情

【题目】已知以点为圆心的圆经过点,线段的垂直平分线交圆于点,且

1求直线的方程;

(2)求圆的方程;

3设点在圆上,试问使的面积等于8的点共有几个?证明你的结论

【答案】123两个

【解析】

试题分析:1求出中点坐标,且的斜率与的斜率互为负倒数,可得方程;2要求圆的方程,关键是求出圆心坐标,半径已知是,可设圆心为,由圆心在直线上,且半径为联立方程组可解得;3由三角形面积为8,可得边上的高为,即的距离,下面只要判断圆上有几个点到直线的距离为,也即判断到直线距离为的两条平行线与圆的位置关系

试题解析:直线的斜率 中点坐标为

直线方程为

设圆心,则由上得:

又直径,,

①②解得

圆心

的方程为

3

面积为8时,点到直线的距离为

又圆心到直线的距离为,圆的半径,且

圆上共有两个点使面积为8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 平面 的中点.

(1)求四棱锥的体积;

(2)求证:

(3)判断线段上是否存在一点 (与点不重合),使得四点共面? (结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,点P是圆 上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,且平面, ,的中点.

(1)求证:

(2)求三棱锥的体积;

(3)探究在上是否存在点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,求

(1)过点A,B且周长最小的圆的方程;

(2)过点A,B且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对于任意的实数都有成立,且当<0恒成立.

(1)判断函数的奇偶性;

(2)若=-2,求函数上的最大值;

(3)求关于的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都为正数的数列{an}满足a1=1,an2﹣(2an1﹣1)an﹣2an1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆、圆均满足圆心在直线上,过点,且与直线l2:x=-1相切.

1)当时,求圆,圆的标准方程;

2)直线l2与圆、圆分别相切于AB两点,求的最小值.

查看答案和解析>>

同步练习册答案