精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.

(1)求证:AA1⊥BC1;
(2) 求三棱锥A1-ABC的体积.

(1) 略
(2)
(1)证明 : 因为四边形AA1C1C是菱形,所以有AA1=A1C1=C1C=CA=1.从而知△AA1B是等边三角形. 设D是AA­1的中点、连结BD,C1D,则BD⊥AA1,由 =  
知C1到AA1的距离为∠AA1C1=60°,所以△AA1C1是等边三角形,
且C1D⊥AA1,所以AA1⊥平面BC1D. 又BC1平面BC1D,故AA1⊥BC1.
由(1)知BD⊥AA1,又侧面ABB1A1⊥侧面AA1C1C,所以BD⊥平面AA1C1C,
即B到平面AA1C1C 的距离为BD. 又 =,BD=
所以 = =·BD=××=
故三棱锥A1-ABC的体积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


如图,在三棱柱中, ,,点D是上一点,且

(1)求证:平面平面
(2)求证:平面;
(3)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(Ⅰ)求证:BD⊥平面PAC
(Ⅱ)求二面角PCDB的大小;
(Ⅲ)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知斜三棱柱在底面上的射影恰为的中点又知

(1)求证平面
(2)求到平面的距离;
(3)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,,且.

(Ⅰ)求证:对任意,总有
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在直三棱柱中,的中点.

(Ⅰ)在线段上是否存在一点,使得⊥平面?若存在,找出点的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面和平面所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,若EF=,则异面直线AD与BC所成的角为_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知一四棱锥的三视图,E是侧棱PC上的动点.
(1)求四棱锥的体积;
(2)若E点分PC为PE:EC=2:1,求点P到平面BDE的距离;
(3)若E点为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α内有不共线的三点到β的距离相等;
④存在异面直线l,m,使得l//α,l//β,m//α,m//β;
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案