精英家教网 > 高中数学 > 题目详情
5.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|\overrightarrow a+\overrightarrow b|=2$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角;
(2)求证:$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow a$.

分析 (1)根据条件可得出$(\overrightarrow{a}+\overrightarrow{b})^{2}=4$,进而得出$\overrightarrow{a}•\overrightarrow{b}=-2$,从而求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,从而得出$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)容易求出$(\overrightarrow{a}+2\overrightarrow{b})•\overrightarrow{a}=0$,从而证出$(\overrightarrow{a}+2\overrightarrow{b})⊥\overrightarrow{a}$.

解答 解:(1)据条件:
$(\overrightarrow{a}+\overrightarrow{b})^{2}$
=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=$4+2\overrightarrow{a}•\overrightarrow{b}+4$
=4;
∴$\overrightarrow{a}•\overrightarrow{b}=-2$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-2}{2×2}=-\frac{1}{2}$;
又$<\overrightarrow{a},\overrightarrow{b}>∈[0,π]$;
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$;
(2)证明:
∵$(\overrightarrow{a}+2\overrightarrow{b})•\overrightarrow{a}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}=4-4=0$;
∴$(\overrightarrow{a}+2\overrightarrow{b})⊥\overrightarrow{a}$.

点评 考查向量数量积的运算及计算公式,向量垂直的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设定点F1(0,2),F2(0,-2),动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,则点P的轨迹是(  )
A.椭圆B.线段C.不存在D.椭圆或线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示,成绩落在[70,80)中的人数为20.
(1)求a和n的值;
(2)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数$\overline x$和中位数m;
(3)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成下列表格.
男生女生合计
优  秀
不优秀
合 计

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设P在[0,5]上随机取值,求方程x2+px+1=0有实根的概率为(  )
A.0.2B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,c=$\sqrt{3}$,B=45°,C=60°,则b=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且sin A=$\frac{\sqrt{10}}{10}$,cos2B=$\frac{3}{5}$,
(1)求A+B的值;
(2)若b-a=2-$\sqrt{2}$,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sin(α+$\frac{π}{3}$)=-$\frac{1}{2}$,α∈(0,π),则cosα=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A、B、C所对的边分别是a、b、c,若$a=\sqrt{6}$,b=2,A=60°,则B=(  )
A.30°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{4}x,x≥4}\\{f({x}^{2}),x<4}\end{array}\right.$,则f(3)+f(4)=3+log49.

查看答案和解析>>

同步练习册答案