精英家教网 > 高中数学 > 题目详情
15.设定点F1(0,2),F2(0,-2),动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,则点P的轨迹是(  )
A.椭圆B.线段C.不存在D.椭圆或线段

分析 定点F1(0,2),F2(0,-2),动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,利用基本不等式的性质可得:|PF1|+|PF2|≥4,当且仅当a=2时取等号.即可得出轨迹方程.

解答 解:∵定点F1(0,2),F2(0,-2),动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,
∴|PF1|+|PF2|≥2$\sqrt{a×\frac{4}{a}}$=4,当且仅当a=2时取等号.
①|PF1|+|PF2|>4=|F1F2|,其轨迹为椭圆.
②|PF1|+|PF2|=4=|F1F2|,其轨迹为线段F1F2
则点P的轨迹是椭圆或线段.
故选:D.

点评 本题考查了椭圆的定义、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,若可放入一球于其内部且与其各面相切,则该几何体的表面积为(  )
A.96B.144C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.(若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”如137,359,567等)得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同学甲参加活动,求甲得分X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}(1-2a)x+5(x≤12)\\{a^{x-13}}(x>12)\end{array}\right.$,若数列{an}满足an=f(n),n∈N+,且对任意的两个正整数m,n(m≠n),都有(m-n)(am-an)<0,则实数a的取值范围是($\frac{1}{2}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=f(x)(x∈R)满足f(x)=2x+1,在数列{an},a1=1,an+1=f(an)-1(n∈N*),数列{bn}为等差数列,首项b1=1,公差为2.
(1)求数列{an},{bn}的通项公式;
(2)令${c_n}=\frac{b_n}{a_n}$(n∈N*),求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合An={1,2,3,…,n}(n∈N*,n≥3),记An中的元素组成的非空子集为$A_i^'$(i∈N*,i=1,2,3,…,2n-1),对于?i∈{1,2,3,…,2n-1},$A_i^'$中的最小元素和为Sn,则S5=(  )
A.32B.57C.75D.480

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有6个零件,其中4个一等品,2个二等品,若从这6个零件中任意取2个,那么至少有1个一等品的概率是$\frac{14}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|\overrightarrow a+\overrightarrow b|=2$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角;
(2)求证:$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow a$.

查看答案和解析>>

同步练习册答案