精英家教网 > 高中数学 > 题目详情
6.在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.(若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”如137,359,567等)得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同学甲参加活动,求甲得分X的分布列.

分析 由题意知,全部“三位递增数”的个数为$C_9^3=84$,随机变量X的取值为:0,-1,1,分别求出相应的概率,由此能求出X的分布列.

解答 解:由题意知,全部“三位递增数”的个数为$C_9^3=84$,
随机变量X的取值为:0,-1,1,
$P({X=0})=\frac{C_8^3}{C_9^3}=\frac{2}{3}$,
$P({X=-1})=\frac{C_4^2}{C_9^3}=\frac{1}{14}$,
$P({X=1})=1-\frac{1}{14}-\frac{2}{3}=\frac{11}{42}$
所以X的分布列为

X0-11
P$\frac{2}{3}$$\frac{1}{14}$$\frac{11}{42}$

点评 本题考查离散型随机变量的分布列、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知在等腰梯形ABCD中.AB∥CD,AB=2CD,双曲线M以A、B为焦点.且过C、D两点,点E在双曲线M上.若$\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}$,则双曲线的离心率为$\frac{8\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,AH为边BC上的高,有以下结论:
①$\overrightarrow{AC}•\frac{{\overrightarrow{AH}}}{{|{\overrightarrow{AH}}|}}=c\;sinB$; 
②$\overrightarrow{BC}•(\overrightarrow{AC}-\overrightarrow{AB})={b^2}+{c^2}-2bccosA$;
③$\overrightarrow{AH}•\overrightarrow{AC}={\overrightarrow{AH}^2}$;
④$\overrightarrow{AH}•(\overrightarrow{AB}+\overrightarrow{BC})=\overrightarrow{AH}•\overrightarrow{AB}$.
其中所有的正确序号的是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=(m2-2m-3)+(m2-4m+3)i是纯虚数,实数m=(  )
A.1B.-1C.1或-3D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$的前n项和Sn
(1)计算S1,S2,S3,S4;并由此推测Sn的表达式;
(2)证明(1)中推测的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$a=sin\frac{π}{8}$,$b=\frac{π}{8}$,则a与b的大小关系是a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知g(x)=x3+ax2-x+2的单调递减区间为(-$\frac{1}{3}$,1),则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设定点F1(0,2),F2(0,-2),动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=a+\frac{4}{a}(a>0)$,则点P的轨迹是(  )
A.椭圆B.线段C.不存在D.椭圆或线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示,成绩落在[70,80)中的人数为20.
(1)求a和n的值;
(2)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数$\overline x$和中位数m;
(3)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成下列表格.
男生女生合计
优  秀
不优秀
合 计

查看答案和解析>>

同步练习册答案