精英家教网 > 高中数学 > 题目详情
14.复数z=(m2-2m-3)+(m2-4m+3)i是纯虚数,实数m=(  )
A.1B.-1C.1或-3D.-1或3

分析 由实部为0且虚部不为0列式求解.

解答 解:∵z=(m2-2m-3)+(m2-4m+3)i是纯虚数,
∴$\left\{\begin{array}{l}{{m}^{2}-2m-3=0}\\{{m}^{2}-4m+3≠0}\end{array}\right.$,解得:m=-1.
故选:B.

点评 本题考查复数的基本概念,考查了一元二次方程的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若f(x)在U(x0,δ)有定义,且在x0点可导,则$\underset{lim}{h→0}\frac{f({x}_{0}+2h)-f({x}_{0}-h)}{h}$=3f′(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,若可放入一球于其内部且与其各面相切,则该几何体的表面积为(  )
A.96B.144C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,则输出的a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设X~B(4,p),其中0<p<$\frac{1}{2}$,且P(X=2)=$\frac{8}{27}$,那么P(X=1)=(  )
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{8}{27}$D.$\frac{32}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线y=ex-2x+e在x=0处的切线方程为x+y-1-e=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.(若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”如137,359,567等)得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同学甲参加活动,求甲得分X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有6个零件,其中4个一等品,2个二等品,若从这6个零件中任意取2个,那么至少有1个一等品的概率是$\frac{14}{15}$.

查看答案和解析>>

同步练习册答案