精英家教网 > 高中数学 > 题目详情
2.执行如图所示的程序框图,则输出的a=-4.

分析 模拟执行程序框图,依次写出得到的b,a,i的值,即可得出结论.

解答 解:①1<40,b=-1,a=-1,i=2;②$2<40,b=-\frac{5}{2},a=-\frac{5}{2},i=3$;③3<40,b=-4,a=-4,i=4
;④4<40,b=-1,a=-1,i=5,…,周期为3.39<40,b=-4,a=-4,i=40.
故答案为-4.

点评 本题主要考查了循环结构的程序框图,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{2sinx•cosx}{1+sinx+cosx}$,x∈(0,$\frac{π}{2}$]的最大值M,最小值为N,则M-N=(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\sqrt{2}$-1C.2$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)={sin^2}(2x-\frac{π}{4})-2t•sin(2x-\frac{π}{4})+{t^2}-6t+1(x∈[\frac{π}{24},\frac{π}{2}])$其最小值为g(t).
(1)若t=1,求$f({\frac{π}{8}})$的值;
(2)求g(t)的表达式;
(3)当$-\frac{1}{2}≤t≤1$时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆O:x2+y2=1,一只蚂蚁从点$A({\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$出发,沿圆周爬行(逆时针或顺时针),当它爬行到点B(-1,0)时,蚂蚁爬行的最短路程为(  )
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{4π}{3}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,AH为边BC上的高,有以下结论:
①$\overrightarrow{AC}•\frac{{\overrightarrow{AH}}}{{|{\overrightarrow{AH}}|}}=c\;sinB$; 
②$\overrightarrow{BC}•(\overrightarrow{AC}-\overrightarrow{AB})={b^2}+{c^2}-2bccosA$;
③$\overrightarrow{AH}•\overrightarrow{AC}={\overrightarrow{AH}^2}$;
④$\overrightarrow{AH}•(\overrightarrow{AB}+\overrightarrow{BC})=\overrightarrow{AH}•\overrightarrow{AB}$.
其中所有的正确序号的是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足:a1=1,a2=2,an=$\frac{{a}_{{\;}_{n-1}}}{{a}_{n-2}}$(n≥3,n∈N*),则a2017等于(  )
A.1B.2C.$\frac{1}{2}$D.22017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=(m2-2m-3)+(m2-4m+3)i是纯虚数,实数m=(  )
A.1B.-1C.1或-3D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$a=sin\frac{π}{8}$,$b=\frac{π}{8}$,则a与b的大小关系是a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.20172016除以2018的余数为1.

查看答案和解析>>

同步练习册答案