精英家教网 > 高中数学 > 题目详情
13.已知$f(x)={sin^2}(2x-\frac{π}{4})-2t•sin(2x-\frac{π}{4})+{t^2}-6t+1(x∈[\frac{π}{24},\frac{π}{2}])$其最小值为g(t).
(1)若t=1,求$f({\frac{π}{8}})$的值;
(2)求g(t)的表达式;
(3)当$-\frac{1}{2}≤t≤1$时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.

分析 (1)若t=1,代入计算求$f({\frac{π}{8}})$的值;
(2)分类讨论,求g(t)的表达式;
(3)令h(t)=g(t)-kt,欲使g(t)=kt有一个实根,则只需$\left\{{\begin{array}{l}{h(-\frac{1}{2})≤0}\\{h(1)≥0}\end{array}}\right.$或$\left\{{\begin{array}{l}{h(-\frac{1}{2})≥0}\\{h(1)≤0}\end{array}}\right.$,即可求实数k的取值范围.

解答 解:(1)t=1,$f({\frac{π}{8}})$=1-6+1=-4                                       …(3分)
(2)因为$x∈[\frac{π}{24},\frac{π}{2}]$,所以$2x-\frac{π}{4}∈[-\frac{π}{6},\frac{3π}{4}]$,
所以$sin(2x-\frac{π}{4})∈[-\frac{1}{2},1]$…(5分)
$f(x)={[sin(2x-\frac{π}{4})-t]^2}-6t+1$($x∈[\frac{π}{24},\frac{π}{2}]$)
当$t<-\frac{1}{2}$时,则当sin(2x-$\frac{π}{4}$)=-$\frac{1}{2}$时,${[f(x)]_{min}}={t^2}-5t+\frac{5}{4}$…(6分)
当-$\frac{1}{2}$≤t≤1时,则当sin(2x-$\frac{π}{4}$)=t时,f(x)min=-6t+1 …(7分)
当t>1时,则当sin(2x-$\frac{π}{4}$)=1时,${[f(x)]_{min}}={t^2}-8t+2$…(8分)
故g(t)=$\left\{\begin{array}{l}{{t}^{2}-5t+\frac{5}{4},t<-\frac{1}{2}}\\{-6t+1,-\frac{1}{2}≤t≤1}\\{{t}^{2}-8t+2,t>1}\end{array}\right.$                     …(9分)
(3)当$-\frac{1}{2}≤t≤1$时,g(t)=-6t+1,令h(t)=g(t)-kt
欲使g(t)=kt有一个实根,则只需$\left\{{\begin{array}{l}{h(-\frac{1}{2})≤0}\\{h(1)≥0}\end{array}}\right.$或$\left\{{\begin{array}{l}{h(-\frac{1}{2})≥0}\\{h(1)≤0}\end{array}}\right.$
解得k≤-8或k≥-5.           …(12分)

点评 本题考查函数的最值,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大小;
(2)若b=$\frac{1}{2}$,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)在U(x0,δ)有定义,且在x0点可导,则$\underset{lim}{h→0}\frac{f({x}_{0}+2h)-f({x}_{0}-h)}{h}$=3f′(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的反函数,并指出该函数和它的反函数的定义域:
(1)y=$\frac{x}{2x-1}$;
(2)y=$\sqrt{2x-3}$;
(3)y=ex-1
(4)y=2sinx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-ax-a(其中a∈R,e=2.71828…为自然对数的底数).
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)设过曲线h(x)=-f(x)-(a+1)x+2a上任意一点处的切线l1,总存在过曲线g(x)=(x-1)a+2cosx上一点处的切线l2,使得l1⊥l2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2+2x+a.若g(x)=$\frac{1}{{e}^{x}}$,对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,若可放入一球于其内部且与其各面相切,则该几何体的表面积为(  )
A.96B.144C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,则输出的a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算$\frac{2+2i}{i}+\frac{1+i}{1-i}$.

查看答案和解析>>

同步练习册答案