【题目】数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通项公式an;
(2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{
}的前n项和Sn.
【答案】(1)当x=1时,an =2n-4,当x=3时, an=4-2n;;(2)![]()
【解析】
(1)题目给出了一个等差数列的前3项,根据等差中项概念列式a1+a3=2a2,然后把a1和a3代入得到关于x的方程,解方程,求出x后再分别代回a1=f(x+1)求a1,则d也可求,所以通项公式可求.
(2)利用数列是递增数列求出通项公式,化简数列的通项公式,通过裂项消项法求解数列的和即可.
解:(1)数列{an}为等差数列,所以a1+a3=2a2,
即f(x+1)+f(x-1)=0,又f(x)=x2-4x+2,
所以(x+1)2-4(x+1)+2+(x-1)2-4(x-1)+2=0,整理得x2-4x+3=0,解得x=1或x=3.
当x=1时,a1=f(x+1)=f(2)=22-4×2+2=-2,d=a2-a1=0-(-2)=2,
∴an=a1+(n-1)d=-2+2(n-1)=2n-4.
当x=3时,a1=f(x+1)=f(4)=42-4×4+2=2,d=0-2=-2.所以an=4-2n.
综上:当x=1时,an =2n-4;当x=3时, an=4-2n.
(2)数列{an}为递增数列,d>0,
所以数列{an}的通项公式为an=2n-4.
bn=an+1+an+2+an+3+an+4=8n+4,
=
=
,
数列{
}的前n项和Sn=
=
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
【答案】(1)
;
.
(2)
.
【解析】【试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得
两点的坐标, 设点
,代入向量
,利用三角函数的值域来求得取值范围.
【试题解析】
(Ⅰ)圆
的参数方程为
(
为参数).
直线
的直角坐标方程为
.
(Ⅱ)由直线
的方程
可得点
,点
.
设点
,则
.
.
由(Ⅰ)知
,则
.
因为
,所以
.
【题型】解答题
【结束】
23
【题目】选修4-5:不等式选讲
已知函数
,
.
(Ⅰ)若对于任意
,
都满足
,求
的值;
(Ⅱ)若存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·浙江卷)已知数列{an}满足a1=
且an+1=an-
(n∈N*).
(1)证明:1≤
≤2(n∈N*);
(2)设数列{
}的前n项和为Sn,证明:
(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是偶函数,且满足
,当
时,
,当
时,
的最大值为
.
(1)求实数
的值;
(2)函数
,若对任意的
,总存在
,使不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设
由题
,由此求出
,可得椭圆
的方程;
(2)设
,
,
当直线
的斜率不存在时,可得
;
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
通过运算可得
,同理可得
,由此得到直线
的斜率为
,
直线
的斜率为
,进而可得
.
试题解析:(1)设
由题
,
解得
,则
,
椭圆
的方程为
.
(2)设
,
,
当直线
的斜率不存在时,设
,则
,
直线
的方程为
代入
,可得
,
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
可得:
,
又
,则
,代入上述方程可得
,
,则![]()
,
设直线
的方程为
,同理可得
,
直线
的斜率为
,
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
【题型】解答题
【结束】
21
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点
刚好是边长为
的等边三角形的三个顶点.
![]()
(Ⅰ)第四次射击时,该运动员瞄准
区域射击(不会打到
外),则此次射击的着弹点距
的距离都超过
的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间
内,调整一下后,又连打三枪,其成绩(环数)都在区间
内.现从这
次射击成绩中随机抽取两次射击的成绩(记为
和
)进行技术分析.求事件“
”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com