精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
a
x
-a(a∈R)

(I)求f(x)的单调区间;
(II)求证:不等式
1
lnx
-
1
x-1
1
2
对一切x∈(1,2)
恒成立.
分析:(I)求导函数,对参数进行分类讨论:若a≤0,则f′(x)>0,函数为增函数;若a>0,令f′(x)>0,可得f(x)的单调增区间,令f′(x)<0,可得单调减区间;
(II)构造函数f(x)=
1
lnx
-
1
x-1
-
1
2
,求导函数,可得f'(x)=-
1
xln2x
+
1
(x-1)2
=
(x-1)2-xln2x
x(x-1)2ln2
,令g(x)=(x-1)2-x(lnx)2,g'(x)=2(x-1)-(lnx)2-2lnx,g“(x)=
2(x-lnx-1)
x
,设h(x)=x-lnx-1,x∈(1,2),证明h(x)在(1,2)上单调增,从而可得g'(x)在(1,2)上单调增,进一步可得g(x)在(1,2)上单调增f(x)在(1,2)上单调减,即可得到结论.
解答:(I)解:求导函数,可得f′(x)=
1
x
-
a
x2
=
x-a
x2
(x>0)
若a≤0,则f′(x)>0,函数为增函数,函数的单调增区间为(0,+∞)
若a>0,令f′(x)>0,可得x>a,令f′(x)<0,可得0<x<a,
∴f(x)的单调增区间为(a,+∞),单调减区间为(0,a);
(II)证明:设f(x)=
1
lnx
-
1
x-1
-
1
2
,求导函数,可得f'(x)=-
1
xln2x
+
1
(x-1)2
=
(x-1)2-xln2x
x(x-1)2ln2

令g(x)=(x-1)2-x(lnx)2,g'(x)=2(x-1)-(lnx)2-2lnx,g“(x)=
2(x-lnx-1)
x

设h(x)=x-lnx-1,x∈(1,2),h'(x)=1-
1
x
>0,
∴h(x)在(1,2)上单调增,∴h(x)>h(1)=0,
∴g“(x)>0,g'(x)在(1,2)上单调增,∴g'(x)>g'(1)=0,
∴g(x)在(1,2)上单调增,∴g(x)>g(1)=0,
∴f'(x)<0,∴f(x)在(1,2)上单调减,f(x)<f(2)<0,
1
lnx
-
1
x-1
-
1
2
<0

1
lnx
-
1
x-1
1
2
点评:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,解题的关键是利用导数确定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案