精英家教网 > 高中数学 > 题目详情

【题目】已知直线及圆

1)求直线所过定点;

2)求直线被圆截得的最短弦长及此时直线的方程.

【答案】(1)直线l恒过点(2)最短弦长为,直线l的方程为

【解析】

1)根据题意,将直线的方程变形可得,将该方程看成是关于的一次方程,令的系数和常数部分为0,可得的值,即可得答案;
2)设过定点为,根据题意,当时,直线被圆所截得的弦长最短,由直线垂直的斜率关系可得直线的斜率,结合定点的坐标求出直线的方程,由弦长公式求出最短弦的长度即可得答案;

1)证明:直线l化为

因为直线恒过定点,

解得

则直线所过定点为

2)设直线与圆的交点为AB,由(1)知l过定点在圆内,且与过此点的圆的半径垂直时,被圆所戴的弦长最短,

此时圆心到直线的距离为

所以,即最短弦长为

则直线的斜率

则直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABDC中,.

1)若S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由;

2)直角梯形ABDC绕直线AC所在直线旋转一周所得几何体名称是什么?并求出其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数与复平面上点对应.

1)若是关于的一元二次方程的一个虚根,且,求实数的值;

2)设复数满足条件(其中、常数),当为奇数时,动点的轨迹为,当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹的方程;

3)在(2)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求实数m的值;

2)若l1l2,求l1l2之间的距离d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中x>0,k为常数,e为自然对数的底数.

(1)当k≤0时,求的单调区间;

(2)若函数在区间(1,3)上存在两个极值点,求实数k的取值范围;

(3)证明:对任意给定的实数k,存在(),使得在区间()上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线x轴,y轴的交点分别为AB,圆C以线段AB为直径.

1)求圆C的标准方程;

2)若直线l过点且圆心Cl的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.

1)如果命题是真命题,求实数的取值范围;

2)如果为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的图象上任意两点,若的中点,且的横坐标为

1)求

2)若,求

3)已知数列的通项公式),数列的前项和为,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,对任意的正整数n,都有成立,记.

(1)求数列与数列的通项公式;

(2)求证:①恒成立.恒成立,其中为数列的前n项和.

(3)记的前n项和,求证:对任意正整数n,都有.

查看答案和解析>>

同步练习册答案