精英家教网 > 高中数学 > 题目详情

已知等比数列{an}中,a2=2,a5=128,若bn=log2an,数列{bn}前n项的和为Sn
(Ⅰ)求数列{bn}的前n项和Sn
(Ⅱ)求不等式Sn<2bn的解集.

解:(I)在等比数列{an}中,由a5=a2q3,又a2=2,a5=128,q3=64,
∴q=4,∴an=a2qn-2=2•4n-2=22n-3
∴bn=log2an=log222n-3=2n-3.bn=b1+b2+b3+…+bn=(2•1-3)+(2•2-3)+(2•3-3)+…+(2•n-3)
=2(1+2+3+…+n)-3n=n2-2n
(II)由Sn<2bn,得n2-2n<2(2n-3),即n2-6n+6<0,
又n∈N*
∴n=2,3,4
故原不等式的解集是{2,3,4}
分析:(I)设数列{an}的公比为q,由a2=2,a5=128求得a1和q,再根据等比数列{an}的通项公式,进而可知数列{bn}是等差数列.再利用等差数列的求和公式求得答案.
(II)由Sn<2bn,得n2-2n<2(2n-3),即n2-6n+6<0,解不等式即可
点评:本题主要考查了等比数列的通项公式及不等式的解法.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案