精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在上,过点//的位置(),
使得.

(I)求证:  (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.
(1)见解析;(2)当点E在线段AB上移动时,二面角的平面角的余弦值为定值.

试题分析:(1)在中,
平面PEB.
平面PEB,
(2)在平面PEB内,经P点作PDBE于D,由(1)知EF面PEB,
EFPD.PD面BCEF.在面PEB内过点B作直线BH//PD,则BH面BCFE.以B点为坐标原点,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系.
设PE=x(0<x<4)又
中,

从而   
是平面PCF的一个法向量,由

是平面PFC的一个法向量 又平面BCF的一个法向量为
设二面角的平面角为,则
因此当点E在线段AB上移动时,二面角的平面角的余弦值为定值.
点评:本题通过考查直线与直线,直线与平面、平面与平面的位置关系等基础知识,考查空间想像能力、推理论证能力、运算求解能力、考查化归与转化思想,函数与方程思想等.属中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体中,直线(   )
A.异面且垂直B.异面但不垂直
C.相交且垂直D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。

(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面的中点, 是线段上的点.

(I)当的中点时,求证:平面
(II)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.

(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知平面//平面,AB、CD是夹在间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于则函数的图象大致是(   )

查看答案和解析>>

同步练习册答案