精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sinx-$\frac{\sqrt{3}}{2}$x,x∈(0,2π)
(Ⅰ)求函数f(x)的图象在x=$\frac{π}{6}$处的切线方程
(Ⅱ)求f(x)在给定定义域内的极值.

分析 (Ⅰ)求出函数的导数,计算f($\frac{π}{6}$),f′($\frac{π}{6}$)的值,求出切线方程即可;
(Ⅱ)求出函数的导数,解关于导函数的方程,求出函数的单调区间,求出函数的极值即可.

解答 解:(Ⅰ)f′(x)=cosx-$\frac{\sqrt{3}}{2}$,
故f($\frac{π}{6}$)=$\frac{1}{2}$-$\frac{\sqrt{3}π}{12}$,f′($\frac{π}{6}$)=0,
故切线方程是:y=$\frac{1}{2}$-$\frac{\sqrt{3}π}{12}$;
(Ⅱ)f′(x)=cosx-$\frac{\sqrt{3}}{2}$,
令f′(x)=0,解得:x=$\frac{π}{6}$或x=$\frac{11π}{6}$,
故f(x)在(0,$\frac{π}{6}$)递增,在($\frac{π}{6}$,$\frac{11π}{6}$)递减,在($\frac{11π}{6}$,2π)递增,
故f(x)极大值=f($\frac{π}{6}$)=$\frac{1}{2}$-$\frac{\sqrt{3}π}{12}$,f(x)极小值=f($\frac{11π}{6}$)=-$\frac{1}{2}$-$\frac{11\sqrt{3}π}{12}$.

点评 本题考查了切线方程,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.甲袋中装有5张奖券,其中3张10元的,2张20元的;乙袋中装有5张奖券都是10元的,所有奖券外形一样,现从甲袋中任取两张放入乙袋,搅拌均匀后再从乙袋中任取两张放入甲袋.
(Ⅰ)求甲袋奖券中有且仅有一张20元的概率;
(Ⅱ)求甲袋中奖券总额X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边与y轴的正半轴的夹角为30°,且终边落在第二象限,又-720°<α<0°,则角α为-240°,-600°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数y=f(x-1)是单调递减函数(如图所示),给出四个结论,其中正确结论个数是(  )
①f(0)=1  ②f(1)<1    ③f-1(1)=0    ④f-1($\frac{1}{2}$)>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线2x+3y-1=0与直线4x+my+11=0平行,则m的值为(  )
A.$\frac{8}{3}$B.$-\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
(1)求销售额y的方差;
(2)求回归直线方程.
(参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{1}^{2}$=13500,${{\sum_{i=1}^{5}x}_{i}y}_{i}$=1380,${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1和侧面CDD1C1都是矩形,BC∥AD,△ABD是边长为2的正三角形,E,F分别为AD,A1D1的中点.
(1)求证:平面A1BE⊥平面ADD1A1
(2)若CF∥平面A1BE,求棱BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.图中各数类似“杨辉三角”,每行首末两数分别为1,2,每行除首末两数外,其余各数均等于“肩上”两数之和,则第n行的n+1个数的和为(  )
A.3nB.3×2n-1C.$\frac{3({n}^{2}-n)}{2}$+3D.n2-n+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+$\frac{1-a}{x}$-ax
(Ⅰ)若a$>\frac{1}{2}$,讨论函数f(x)的单调性
(Ⅱ)若f(x)=-ax有恰有一个实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案