精英家教网 > 高中数学 > 题目详情
18.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
(1)求销售额y的方差;
(2)求回归直线方程.
(参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{1}^{2}$=13500,${{\sum_{i=1}^{5}x}_{i}y}_{i}$=1380,${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

分析 (1)由题意求出$\overline{x}$,$\overline{y}$,即可求解售额y的方差;
(2)根据$\overline{x}$,$\overline{y}$,$\sum_{i=1}^{5}{x}_{i}^{2}$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$,代入公式求值,从而得到回归直线方程;

解答 解:(1)根据表中数据:$\overline{x}$=$\frac{1}{5}(2+4+6+8+5)$=5,$\overline{y}$=$\frac{1}{5}(30+40+50+60+70)$=50
方差${S}^{2}=\frac{1}{5}[(30-50)^{2}+(40-50)^{2}+(60-50)^{2}+(50-50)^{2}+(70-50)^{2}]$=200;
(2)由(1)$\overline{x}$=5,$\overline{y}$=50,
又已知$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{1}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380;
于是可得:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)=$\frac{1380-5×5×50}{145-5×{5}^{2}}=6.5$
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=50-6.5×5=17.5;
因此,所求回归直线方程为:$\hat y$=6.5x+17.5.

点评 本题考查了线性回归方程的求法及方差的计算的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图,输出的结果S的值为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β,γ是三个不重合的平面,m,n是两条不重合的直线,则下列说法正确的是(  )
A.若α⊥β,β⊥γ,则α∥γB.若α⊥β,m∥β,则m⊥αC.若m⊥α,n⊥α,则m∥nD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sinx-$\frac{\sqrt{3}}{2}$x,x∈(0,2π)
(Ⅰ)求函数f(x)的图象在x=$\frac{π}{6}$处的切线方程
(Ⅱ)求f(x)在给定定义域内的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中错误的是(  )
A.命题“?x∈[0,1],使x2-1≥0的否定为“?x∈[0,1],都有x2-1<0”
B.命题p为假命题,命题q为真命题,则(¬p)∨(¬q)为真命题
C.命题“若x,y均为奇数,则x+y为奇数”及它的逆命题均为假命题
D.命題“若x2+2x=0,则x=0或x=2”的逆否命题为“若x≠0或x≠2,则x2+2x≠0”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知随机变量的分布列为:$P(X=k)=\frac{1}{3^k},k=1,2,…$,则P(2<X≤4)=(  )
A.$\frac{3}{64}$B.$\frac{1}{64}$C.$\frac{4}{81}$D.$\frac{1}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,若$\overrightarrow{OP}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OA}$+$\overrightarrow{OB}$,则∠AOP=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标系中,?ABCD的对角线所在的直线相交于(0,1),若边AB所在直线的方程为x-2y-2=0,则边AB的对边CD所在直线的方程为(  )
A.x-2y-4=0B.x-2y+6=0C.x-2y-6=0D.x-2y+4=0

查看答案和解析>>

同步练习册答案