精英家教网 > 高中数学 > 题目详情
7.已知|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,若$\overrightarrow{OP}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OA}$+$\overrightarrow{OB}$,则∠AOP=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由题意建立平面直角坐标系,得到$\overrightarrow{OA}、\overrightarrow{OB}$的坐标,由$\overrightarrow{OP}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OA}$+$\overrightarrow{OB}$求得$\overrightarrow{OP}$的坐标,再由数量积求夹角公式得答案.

解答 解:由题意建立如图所示直角坐标系,
则$\overrightarrow{OA}$=(3,0),$\overrightarrow{OB}$=(0,1),
∴$\overrightarrow{OP}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\frac{\sqrt{3}}{3}$(3,0)+(0,1)=($\sqrt{3},1$).
∴cos∠AOP=$\frac{\overrightarrow{OA}•\overrightarrow{OP}}{|\overrightarrow{OA}||\overrightarrow{OP}|}=\frac{3\sqrt{3}}{3×2}=\frac{\sqrt{3}}{2}$,
则∠AOP=$\frac{π}{6}$.
故选:A.

点评 本题考查平面向量的数量积运算,考查由数量积求向量的夹角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax2-bx+1,点(a,b)是平面区域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥m}\\{y≥-1}\end{array}\right.$内的任意一点,若f(2)-f(1)的最小值为-6,则m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
(1)求销售额y的方差;
(2)求回归直线方程.
(参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{1}^{2}$=13500,${{\sum_{i=1}^{5}x}_{i}y}_{i}$=1380,${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知(1-$\frac{x}{3}$)2015=a0+a1x+…+a2015x2015,则3a1+32a2+…+32015a2015=(  )
A.0B.1C.-1D.22015-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.图中各数类似“杨辉三角”,每行首末两数分别为1,2,每行除首末两数外,其余各数均等于“肩上”两数之和,则第n行的n+1个数的和为(  )
A.3nB.3×2n-1C.$\frac{3({n}^{2}-n)}{2}$+3D.n2-n+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC中,C=$\frac{π}{4}$,角B的平分线BD交AC于点D,设∠CBD=θ,其中θ是直线x-2y+3=0的倾斜角.
(1)求sinA;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=28,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a3+a4=12,公差d=2,记数列{a2n-1}的前n项和为Sn
(1)求Sn
(2)设数列{$\frac{n}{{a}_{n+1}{S}_{n}}$}的前n项和为Tn,若a2,a5,am成等比数列,求Tm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知AB是⊙O的直径,C是⊙O上异于A,B的点,VC垂直于⊙O所在的平面,且AB=4,VC=3.
(Ⅰ)若点D在△VCB内,且DO∥面VAC,作出点D的轨迹,说明作法及理由;
(Ⅱ)求三棱锥V-ABC体积的最大值,并求取到最大值时,直线AB与平面VAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx.
(1)求f(x)的最小正周期和最大值;
(2)讨论f(x)在[$\frac{π}{4}$,$\frac{3π}{4}$]上的单调性.

查看答案和解析>>

同步练习册答案