精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax2-bx+1,点(a,b)是平面区域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥m}\\{y≥-1}\end{array}\right.$内的任意一点,若f(2)-f(1)的最小值为-6,则m的值为(  )
A.-1B.0C.1D.2

分析 画出约束条件的可行域,f(2)-f(1)的最小值为-6,求出a,b的关系式,然后推出最优解,然后求解m的值.

解答 解:函数f(x)=ax2-bx+1,f(2)-f(1)的最小值为-6,可得:3a-b≤-6.就是3a-b的最小值为:-6.
平面区域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥m}\\{y≥-1}\end{array}\right.$表示的可行域如图:由z=3a-b得b=3a-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点A时,直线y=3x-z的截距最大,
此时z最小.
由$\left\{\begin{array}{l}{x+y-2=0}\\{x=m}\end{array}\right.$,解得A(m,2-m),
此时-6=3×m-(2-m),m=-1,
故选:A.

点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知an=2n-1(n∈N*).
(Ⅰ)求证:$\sqrt{a_n}+\sqrt{{a_{n+3}}}<\sqrt{{a_{n+1}}}+\sqrt{{a_{n+2}}}$;
(Ⅱ)若不等式2n+1>nan+n+2在n≥n0时恒成立,求最小正整数n0,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图,输出的结果S的值为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,3),则实数a=$\frac{1}{6}$;数学期望Eξ=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合A={0,1,2},B={x|x2≤4,x∈N},则A∪B=(  )
A.{1,2}B.{0,1,2}C.{x|-2≤x≤2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1,又A∈C,已知A(4,2$\sqrt{2}$),F(4,0),若由F射至A的光线被双曲线C反射,反射光线通过P(8,k),则k=$3\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β,γ是三个不重合的平面,m,n是两条不重合的直线,则下列说法正确的是(  )
A.若α⊥β,β⊥γ,则α∥γB.若α⊥β,m∥β,则m⊥αC.若m⊥α,n⊥α,则m∥nD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,若$\overrightarrow{OP}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OA}$+$\overrightarrow{OB}$,则∠AOP=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案