精英家教网 > 高中数学 > 题目详情
17.若集合A={0,1,2},B={x|x2≤4,x∈N},则A∪B=(  )
A.{1,2}B.{0,1,2}C.{x|-2≤x≤2}D.{x|0≤x≤2}

分析 利用并集定义直接求解.

解答 解:∵集合A={0,1,2},B={x|x2≤4,x∈N}={0,1,2},
∴A∪B={0,1,2}.
故选:B.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足$\frac{2{a}_{n}-3}{{a}_{n-1}+1}$=2(n≥2),且a2=1,则a8=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲袋中装有5张奖券,其中3张10元的,2张20元的;乙袋中装有5张奖券都是10元的,所有奖券外形一样,现从甲袋中任取两张放入乙袋,搅拌均匀后再从乙袋中任取两张放入甲袋.
(Ⅰ)求甲袋奖券中有且仅有一张20元的概率;
(Ⅱ)求甲袋中奖券总额X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a=log0.32,b=0.32,c=20.3,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+$\frac{1}{2}$x2-(a+1)x(a∈R).
( I)若x=2为函数f(x)的极值点,求a的值.
( II)讨论函数f(x)在区间(0,2)内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax2-bx+1,点(a,b)是平面区域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥m}\\{y≥-1}\end{array}\right.$内的任意一点,若f(2)-f(1)的最小值为-6,则m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边与y轴的正半轴的夹角为30°,且终边落在第二象限,又-720°<α<0°,则角α为-240°,-600°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数y=f(x-1)是单调递减函数(如图所示),给出四个结论,其中正确结论个数是(  )
①f(0)=1  ②f(1)<1    ③f-1(1)=0    ④f-1($\frac{1}{2}$)>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.图中各数类似“杨辉三角”,每行首末两数分别为1,2,每行除首末两数外,其余各数均等于“肩上”两数之和,则第n行的n+1个数的和为(  )
A.3nB.3×2n-1C.$\frac{3({n}^{2}-n)}{2}$+3D.n2-n+3

查看答案和解析>>

同步练习册答案