分析 把已知数列递推式变形,可得${a}_{n}-{a}_{n-1}=\frac{5}{2}$(n≥2),则数列{an}是以$\frac{5}{2}$为公差的等差数列,再由等差数列的通项公式求解.
解答 解:由$\frac{2{a}_{n}-3}{{a}_{n-1}+1}$=2(n≥2),得:
2an-3=2an-1+2,即${a}_{n}-{a}_{n-1}=\frac{5}{2}$(n≥2),
∴数列{an}是以$\frac{5}{2}$为公差的等差数列,
又a2=1,
∴a8=${a}_{2}+6d=1+6×\frac{5}{2}=16$.
故答案为:16.
点评 本题考查数列递推式,考查了等差关系的确定,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 4$\sqrt{2}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{7π}{6}$,$\frac{4π}{3}$) | B. | [$\frac{7π}{6}$,$\frac{4π}{3}$] | C. | ($\frac{4π}{3}$,$\frac{3π}{2}$) | D. | [$\frac{4π}{3}$,$\frac{3π}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {0,1,2} | C. | {x|-2≤x≤2} | D. | {x|0≤x≤2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com