精英家教网 > 高中数学 > 题目详情
19.已知复数z=$\frac{a}{2+i}$+1(a∈R).
(1)若z∈R,求z;
(2)若z在复平面内对应的点位于第一象限,求a的取值范围.

分析 (1)利用复数代数形式的乘除运算化简,由虚部为0求得a值,则z可求;
(2)由(1)可得z=$\frac{2a}{5}+1-\frac{a}{5}i$,由z在复平面内对应的点位于第一象限,可得实部与虚部均大于0,联立不等式组求解.

解答 解:(1)∵z=$\frac{a}{2+i}$+1=$\frac{a(2-i)}{(2+i)(2-i)}+1$
=$\frac{2a}{5}-\frac{a}{5}i+1$=$\frac{2a}{5}+1-\frac{a}{5}i$∈R,
∴$-\frac{a}{5}=0$,即a=0.
则z=1;
(2)由(1)知,z=$\frac{2a}{5}+1-\frac{a}{5}i$,
∵z在复平面内对应的点位于第一象限,
∴$\left\{\begin{array}{l}{\frac{2a}{5}+1>0}\\{-\frac{a}{5}>0}\end{array}\right.$,解得$-\frac{5}{2}$<a<0.
∴a的取值范围是(-$\frac{5}{2},0$).

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是(  )
  ① ② ③
 A i≤7? s=s-$\frac{1}{i}$ i=i+1
 B i≤128? s=s-$\frac{1}{i}$ i=2i
 Ci≤7? s=s-$\frac{1}{2i}$ i=i+1
 D i≤128? s=s-$\frac{1}{2i}$ i=2i
A.AB.BC.CD.D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.吊瓜是一种名贵的中药材,皮,籽,根均可入药,某地区农业科学院研究所依据本地实际情况种植了两种新型的吊瓜品种,在该地区选择了10亩地,平均分成面积相等的两部分,分别种植甲,乙两个品种的吊瓜,收获时测得吊瓜籽的亩产量如图所示:
(Ⅰ)请问甲,乙两种吊瓜籽哪种亩产量更稳定,并说明理由
(Ⅱ)求从种植甲种吊瓜的5亩土地中任选2亩,这两亩土地的吊瓜籽亩产量均超过种植甲种吊瓜的5亩土地的平均亩产量的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足$\frac{2{a}_{n}-3}{{a}_{n-1}+1}$=2(n≥2),且a2=1,则a8=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2$\sqrt{10}$,$\overrightarrow{b}$=(-4,2),$\overrightarrow{a}$•$\overrightarrow{b}$=20,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z的实部为-1,虚部为2,则$\frac{5i}{z}$的共轭复数是(  )
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的前n项和为Sn,且a2n-1=3n-1,a2n=2n,则满足Sn<500的最大的n值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲袋中装有5张奖券,其中3张10元的,2张20元的;乙袋中装有5张奖券都是10元的,所有奖券外形一样,现从甲袋中任取两张放入乙袋,搅拌均匀后再从乙袋中任取两张放入甲袋.
(Ⅰ)求甲袋奖券中有且仅有一张20元的概率;
(Ⅱ)求甲袋中奖券总额X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边与y轴的正半轴的夹角为30°,且终边落在第二象限,又-720°<α<0°,则角α为-240°,-600°.

查看答案和解析>>

同步练习册答案