精英家教网 > 高中数学 > 题目详情
5.设a=log0.32,b=0.32,c=20.3,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

分析 利用指数函数、对数函数的单调性直接求解.

解答 解:∵a=log0.32<log0.31=0,
0<b=0.32<0.30=1,
c=20.3>20=1,
∴a<b<c.
故选:A.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.甲、乙两人组成“风云队”参加某电视台举办的汉字听写大赛活动,每一回合由主持人说出一个词语,并由两们选手各自按照要求规则听写,在每一回合中,如果两人都写对,则“风云队”得2分;如果只有一个写对,则“风云队”得1分;如果两人都没写对,则“风云队”得0分.已知甲每一回合写对的概率是$\frac{3}{4}$,乙每一回合写对的概率是$\frac{1}{2}$;每一回合中甲、乙写对与否互不影响,各回合结果互不影响,假设“风云队”参加了两个回合的活动.
(1)求“风云队”在两个回合中至少写对3个词语的概率;
(2)X表示“风云队”两个回合得分之和,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}的公差d∈(-1,0),且$\frac{si{n}^{2}{a}_{3}co{s}^{2}{a}_{6}-co{s}^{2}{a}_{3}si{n}^{2}{a}_{6}}{sin({a}_{2}+{a}_{7})}$=1,仅当n=9时,数列{an}的前n项和Sn取得最大值,则首项a1的取值范围是(  )
A.($\frac{7π}{6}$,$\frac{4π}{3}$)B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.[$\frac{4π}{3}$,$\frac{3π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图,输出的结果S的值为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,若|$\overrightarrow{c}$|=2,则($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)•($\overrightarrow{a}$+$\overrightarrow{c}$)的最大值是5+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,3),则实数a=$\frac{1}{6}$;数学期望Eξ=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合A={0,1,2},B={x|x2≤4,x∈N},则A∪B=(  )
A.{1,2}B.{0,1,2}C.{x|-2≤x≤2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知随机变量的分布列为:$P(X=k)=\frac{1}{3^k},k=1,2,…$,则P(2<X≤4)=(  )
A.$\frac{3}{64}$B.$\frac{1}{64}$C.$\frac{4}{81}$D.$\frac{1}{81}$

查看答案和解析>>

同步练习册答案