精英家教网 > 高中数学 > 题目详情
15.若数列{an}的前n项和Sn=2n2+3n,则a3+a7=(  )
A.21B.42C.84D.20

分析 由已知等差数列的前n项和判断数列为等差数列并求出S9,进一步求得a5,再由等差数列的性质得答案.

解答 解:∵数列{an}的前n项和Sn=2n2+3n,
∴a1=S1=5;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=2{n}^{2}+3n-[2(n-1)^{2}+3(n-1)]$=4n+1.
验证a1=5上式成立,
∴an=4n+1.
由an+1-an=4n+5-4n-1=4为常数,得数列{an}为等差数列.
∴${S}_{9}=2×{9}^{2}+3×9=189$,
∴${S}_{9}=\frac{{(a}_{1}+{a}_{9})•9}{2}$=9a5=189,得a5=21.
则由等差数列的性质可得a3+a7=2a5=2×21=42.
故选:B.

点评 本题考查等差数列的前n项和,考查了等差数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为(  )
A.$\frac{1}{45}$B.$\frac{1}{15}$C.$\frac{2}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+ax2-(2a+1)x+1,a∈R.
(1)当a=$\frac{1}{4}$时,求f(x)的极值;
(2)设g(x)=ex-x,若对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图茎叶图记录了在某项体育比赛中,七位裁判为一名选手打出的分数,则去掉一个最高分和一个最低分后,所剩数据的平均值为92,方差为2.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,AB为⊙O的直径,AC切⊙O于点A,且AC=2$\sqrt{2}$,过C的割线CMN交AB的延长线于点D,若CM=MN=ND,则BD的长等于$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=ex(x≥0),当x<0时,f(-x)=4f(x).若函数g(x)=f(x)-ax-a(a>0)有唯一零点,则a的取值范围是(  )
A.(0,1)B.($\frac{1}{e}$,e)C.($\frac{1}{4}$,e)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知sin(A-B)+2sin2$\frac{C}{2}$=1.
(I)若a=3$\sqrt{2}$,b=$\sqrt{10}$,求c;
(II)求的$\frac{acosC-ccosA}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=$\frac{2π}{3}$,二面角A-BC-A1的正切值为$\frac{1}{2}$.
(Ⅰ)求侧棱AA1的长;
(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为$\frac{\sqrt{6}}{3}$,若存在,判断点的位置并证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案