精英家教网 > 高中数学 > 题目详情
9.在△ABC中,sinA:sinB:sinC=2:3:4,则cosA:cosB:cosC=14:11:(-4).

分析 由正弦定理知a:b:c=2:3:4,设a=2k b=3k c=4k,由余弦定理可求cosA,cosB,cosC的值,即可得解.

解答 解:由正弦定理知a:b:c=2:3:4
设a=2k b=3k c=4k
由余弦定理cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{k}^{2}(9+16-4)}{2×3k×4k}$=$\frac{7}{8}$,
同理可得cosB=$\frac{11}{16}$,cosC=-$\frac{1}{4}$,
所以cosA:cosB:cosC=14:11:(-4).
故答案为:14:11:(-4).

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,已知an=$\left\{\begin{array}{l}{2n+3(n为奇数)}\\{{3}^{n}(n为偶数)}\end{array}\right.$.求S4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果集合A满足{0,2}⊆A⊆{-1,0,1,2},那么这样的集合A的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列求极限:$\underset{lim}{n→∞}$n2($\frac{k}{n}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$-$\frac{1}{n+3}$-…-$\frac{1}{n+k}$)=$\frac{k(k+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=|x-1|+2|x-2|+3|x-3|+4|x-4|的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x<a},B={x|x<-1,或x>0},若A∩(∁RB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=k•cosx的图象过点P($\frac{π}{3}$,1),则该函数图象在P点处的切线倾斜角等于$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求曲线y=$\frac{1}{x}$在点(2,$\frac{1}{2}$)处的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a3=2,a7=1,又数列{$\frac{1}{1+{a}_{n}}$}是等差数列,则a11等于$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案