精英家教网 > 高中数学 > 题目详情
方程=lgx的根的个数是( )
A.0
B.1
C.2
D.无法确定
【答案】分析:设f(x)=,g(x)=lg x,则方程根的个数就是f(x)与g(x)两个函数图象交点的个数.利用数形结合思想能求出结果.
解答:解:设f(x)=,g(x)=lg x,
则方程根的个数就是f(x)与g(x)两个函数图象交点的个数.
如图所示,在同一平面直角坐标系中画出这两个函数的图象.

由图可得函数f(x)=与g(x)=lg x仅有1个交点,所以方程仅有1个根.
故选B.
点评:本题考查函数的根的存在性和个数判断,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程lgx=sinx的实数根有a个,方程x=sinx的实数根有b个,方程x4=sinx的实数根有c个,则a、b、c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的偶函数,对任意的x∈R都有f(2-x)=f(x)成立.当x∈[0,2]时,f(x)=1-|x-1|,则方程f(x)=lgx的根有

A.5个            B.1个                C.9个        D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,对任意的x∈R都有f(2-x)=f(x)成立.当x∈[0,2]时,f(x)=1-|x-1|,则方程f(x)=lgx的根有(    )

A.5个            B.1个              C.9个              D.7个

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省茂名市高州市长坡中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是   

查看答案和解析>>

同步练习册答案