精英家教网 > 高中数学 > 题目详情
18.已知直线l过点(-1,0 ),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是(  )
A.(-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$)B.(-$\sqrt{3}$,$\sqrt{3}$)C.($-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3})$D.($-\sqrt{2},-\sqrt{2}$)

分析 设直线l的方程为y=k(x+1),由直线l与圆x2+y2=2x有两个交点,得到圆心C(1,0)到直线l的距离d小于圆半径,由此能求出斜率k的取值范围.

解答 解:当直线l的斜率不存在时,直线l的方程为x=-1,此时直线与圆没有交点,不成立;
当直线l的斜率存在时,设直线l的方程为y=k(x+1),
∵直线l与圆x2+y2=2x有两个交点,
圆x2+y2=2x的圆心C(1,0),半径r=$\frac{1}{2}\sqrt{4}$=1,
∴圆心C(1,0)到直线l的距离d=$\frac{|k-0+k|}{\sqrt{{k}^{2}+1}}$<1,
解得-$\frac{\sqrt{3}}{3}<k<\frac{\sqrt{3}}{3}$.
∴斜率k的取值范围是(-$\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$).
故选:C.

点评 本题考查直线的斜率的取值范围的求法,涉及到直线方程、圆、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.“sinα<0”是“α为第三、四象限角”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,其俯视图是边长为1的正三角形,侧视图是菱形,则这个几何体的体积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{6}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若两个非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,则向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,圆M:x2+y2-2x-15=0,定点F(-1,0),点N是圆M上一动点,线段NF的垂直平分线交圆M的半径MN于点Q,点Q的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)不垂直于x轴且不过F点的直线l与曲线C相交于A,B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx+k}{e^x}$(其中k∈R,e是自然对数的底数),f'(x)为f(x)导函数.
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)对任意x>1,xexf'(x)+(2k-1)x<1+k恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,已知点A(-1,0),B(1,2),直线l与AB平行.
(1)求直线l的斜率;
(2)已知圆C:x2+y2-4x=0与直线l相交于M,N两点,且MN=AB,求直线l的方程;
(3)在(2)的圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四棱锥P-ABCD中,所有的棱长均为2,则侧棱与底面ABCD所成的角和该四棱锥的体积分别为(  )
A.45°,$\frac{{4\sqrt{2}}}{3}$B.30°,$\frac{{4\sqrt{2}}}{3}$C.60°,$\frac{{2\sqrt{2}}}{3}$D.75°,$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m的取值范围是(  )
A.(5,8)B.(8,+∞)C.($\frac{13}{2}$,8)D.(5,$\frac{13}{2}$)

查看答案和解析>>

同步练习册答案