(1)求函数f(x)的最大值和最小值;
(2)试比较f(
)与
+2的大小;
(3)某同学发现:当x=
(n∈N)时,有f(x)<2x+2,由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你判断此猜想是否正确,并说明理由.
解:(1)设x1,x2∈[0,1],x1<x2,则x2-x1∈[0,1].
∴f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2.
∴f(x2)-f(x1)≥f(x2-x1)-2≥0.
∴f(x1)≤f(x2).
则当0≤x≤1时,f(0)≤f(x)≤f(1).
在③中,令x1=x2=0,得f(0)≤2,
由②得f(0)≥2,∴f(0)=2.
∴当x=0时,f(x)取得最小值为2;
当x=1时,f(x)取得最大值为3.
(2)在③中,令x1=x2=
,得f(
)≥2f(
)-2,
∴f(
)-2≤
[f(
)-2]≤
[f(
)-2]≤…≤
[f(
)-2]=
,
即f(
)≤
+2.
(3)对x∈[0,1],总存在n∈N,满足
<x≤
.
由(1)与(2),得f(x)≤f(
)≤
+2,
又2x+2>2·
+2=
+2,
∴f(x)<2x+2.
综上所述,对任意x∈[0,1],f(x)<2x+2恒成立.
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com