精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinA,且B>$\frac{π}{2}$,则sinA+sinC的最大值是(  )
A.$\sqrt{2}$B.$\frac{9}{8}$C.1D.$\frac{7}{8}$

分析 利用正弦定理化简得出A,B的关系,用A表示出C,利用三角函数恒等变换化简得出sinA+sinC关于sinA的函数,求出此函数的最大值即可.

解答 解:∵acosA=bsinA,∴$\frac{a}{sinA}=\frac{b}{cosA}$,
又由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,
∴sinB=cosA=sin($\frac{π}{2}-A$),
∵B$>\frac{π}{2}$,
∴π-B=$\frac{π}{2}-A$.
∴B=A+$\frac{π}{2}$.
∴C=π-A-B=$\frac{π}{2}-2A$.
∴sinA+sinC=sinA+cos2A=-2sin2A+sinA+1=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$.
∵0$<A<\frac{π}{2}$,$0<\frac{π}{2}-2A<\frac{π}{2}$,
∴0$<A<\frac{π}{4}$,
∴0<sinA$<\frac{\sqrt{2}}{2}$.
∴当sinA=$\frac{1}{4}$时,sinA+sinC取得最大值$\frac{9}{8}$.
故选:B.

点评 本题考查了三角函数的恒等变换,正弦定理,二次函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx-$\frac{π}{3}$)+h,(A>0,ω>0)的最大值和最小值分别为4和0,且函数图象与x轴相邻两个交点的距离为π;
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间;
(3)求当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,若存在m∈R,使得向量4$\overrightarrow{a}$-m$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$的夹角也为θ,则cosθ的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l过点(0,3),且倾斜角是直线y=2x+1的倾斜角的二倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{2x-y≤2}\end{array}\right.$若z=y+mx有最大值12,则实数m的取值为(  )
A.-4B.-8C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a1,a2,…a9成等差数列,若$\sum_{k=1}^{9}{a}_{k}=0,\sum_{k=1}^{9}{a}_{k}^{2}=15$,且a1<a2,则a9=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{1}{x}$,a为正常数.
(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1,x2∈(0,$\frac{1}{2}$],x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{bn}是首项为b1=1,公差d=3的等差数列,bn=l-3log2 (2an)(n∈N*).
(1)求证:{an}是等比数列;
(2)若数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案