| A. | 直线x=$\frac{π}{6}$ | B. | 直线x=$\frac{π}{12}$ | C. | 直线x=-$\frac{π}{6}$ | D. | 直线x=-$\frac{π}{4}$ |
分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得函数y=g(x)图象的一条对称轴.
解答 解:将函数f(x)=2sin(x-$\frac{π}{3}$)-1的图象向右平移$\frac{π}{3}$个单位,可得y=2sin(x-$\frac{2π}{3}$)-1的图象;
再把所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=g(x)=2sin(2x-$\frac{2π}{3}$)-1的图象.
令2x-$\frac{2π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{1}{2}$kπ+$\frac{7π}{12}$,可得函数y=g(x)图象的对称轴方程为x=$\frac{1}{2}$kπ+$\frac{7π}{12}$,k∈Z.
结合所给的选项,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{3}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{8}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?p:?x∈R,x2≥sinx | B. | ?p:?x∈R,x2<sinx | C. | ?p:?x∈R,x2≥sinx | D. | ?p:?x∈R,x2≤sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a2=4,则a=2 | B. | 若a=b,则$\sqrt{a}$=$\sqrt{b}$ | C. | 若$\frac{1}{a}$=$\frac{1}{b}$,则a=b | D. | 若a<b,则a2<b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com