精英家教网 > 高中数学 > 题目详情
设直线l:y=x+1与椭圆相交于A,B两个不同的点,l与x轴相交于点F,
(1)证明:a2+b2>1;
(2)若F是椭圆的一个焦点,且,求椭圆的方程。

(1)证明:将x=y-1代入
消去x,整理得
由直线l与椭圆相交于两个不同的点,

所以
 (2)解:设
, ①
, ②
因为
所以
代入①,与②联立,消去y2,整理得, ③
因为F是椭圆的一个焦点,则有
将其代入③式,解得
所以椭圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l:y=x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B两个不同的点,与x轴相交于点F.
(Ⅰ)证明:a2+b2>1;
(Ⅱ)若F是椭圆的一个焦点,且
AF
=2
FB
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0)、B(1,0)和动点P满足:∠APB=2θ,且存在正常数m,使得|PA|•|PB|cos2θ=m.
(I)求动点P的轨迹C的方程;
(II)设直线l:y=x+1与曲线C相交于两点E、F,且与y轴的交点为D.若
DE
=(2+
3
)
DF
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与平面上两定点A(-1,0),B(1,0)连线的斜率的积为定值-2.
(1)试求动点P的轨迹方程C.
(2)设直线l:y=x+1与曲线C交于M、N两点,求|MN|

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)设直线l:y=x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两个不同的点,与x轴相交于点F.
(1)证明:a2+b2>1;
(2)若F是椭圆的一个焦点,且以AB为直径的圆过原点,求a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点A(-1,0),B(1,0)连线的斜率的积为定值-2.
(1)试求动点P的轨迹方程C.
(2)设直线l:y=x+1与曲线C交于M、N两点,求|MN|

查看答案和解析>>

同步练习册答案