精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3
(1)求an
(2)求数列{nan}的前n项和Tn

解:(1)由Sn=kcn-k,得an=sn-sn-1=kcn-kcn-1; (n≥2),
由a2=4,a6=8a3.得kc(c-1)=4,kc5(c-1)=8kc2(c-1),解得
所以a1=s1=2;
an=sn-sn-1=kcn-kcn-1=2n,(n≥2),
于是an=2n
(2):∵nan=n•2n
∴Tn=2+2•22+3•23+…+n•2n
2Tn=22+2•23+3•24+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23…+2n-n•2n+1=-n•2n+1=-2+2n+1-n•2n+1
即:Tn=(n-1)•2n+1+2.
分析:(1)先根据前n项和求出数列的通项表达式;再结合a2=4,a6=8a3求出c,k,即可求出数列的通项;
(2)直接利用错位相减法求和即可.
点评:本题主要考察数列求和的错位相减法.数列求和的错位相减法适用于一等差数列乘一等比数列组合而成的新数列.数列求和的错位相减法也是这几年高考的常考点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案