分析 利用换元法,设u=$\sqrt{x}$,v=$\sqrt{3-3x}$,u、v≥0,得出3u2+v2=3;
再设u=cosθ,v=$\sqrt{3}$sinθ,0≤θ≤$\frac{π}{2}$,求函数y=cosθ+$\sqrt{3}$sinθ在θ∈[0,$\frac{π}{2}$]的值域即可.
解答 解:设u=$\sqrt{x}$,v=$\sqrt{3-3x}$,且u、v≥0,
∴3u2+v2=3;
令u=cosθ,v=$\sqrt{3}$sinθ,且0≤θ≤$\frac{π}{2}$,
∴y=cosθ+$\sqrt{3}$sinθ=2sin(θ+$\frac{π}{6}$);
又∵$\frac{π}{6}$≤θ+$\frac{π}{6}$≤$\frac{2π}{3}$,
∴$\frac{1}{2}$≤sin(θ+$\frac{π}{6}$)≤1,
∴1≤2sin(θ+$\frac{π}{6}$)≤2,
即1≤y≤2;
∴函数y=$\sqrt{x}$+$\sqrt{3-3x}$的值域是[1,2].
点评 本题考查了求函数值域的应用问题,解题时应利用换元法,把问题转化为求三角函数在闭区间上的最值问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com