精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a•2x+a-22x+1
(x∈R)

(1)若f(x)满足f(-x)=-f(x),求实数a的值;
(2)在(1)的条件下,判断函数f(x)在[-1,1]上是否有零点,并说明理由;
(3)若函数f(x)在R上有零点,求a的取值范围.
分析:(1)根据函数奇偶性的定义,由f(-x)=-f(x)采用比较系数法,可解出a=1;
(2)根据指数函数单调性,得f(x)=1-
2
2x+1
是R上的增函数.再由f(-1)<0,f(1)>0且f(0)=0,可得f(x)在[-1,1]上有唯一零点x=0;
(3)函数f(x)在R上有零点,即方程a=
2
2x+1
在R上有实数根.讨论函数t═
2
2x+1
的单调性,可得它的值域为(0,2),由此即可得到f(x)在R上有零点时实数a的取值范围.
解答:解:(1)∵f(-x)=
a•2-x+a-2
2-x+1
=
a+(a-2)•2x
1+2x

-f(x)=
-a•2x+(2-a)
2x+1
,且f(-x)=-f(x),
a=2-a
a-2=-a
,解之得a=1;
(2)∵a=1,∴f(x)=
2x-1
2x+1
=1-
2
2x+1

∵t=
2
2x+1
是R上的减函数,∴f(x)是R上的增函数.
∵f(-1)=-
1
3
<0,f(1)=
1
3
>0,f(0)=0
∴f(x)在[-1,1]上有唯一零点x=0.
(3)f(x)=
a•2x+a-2
2x+1
=a-
2
2x+1

∵函数f(x)在R上有零点,
∴方程a=
2
2x+1
在R上有实数根
∵t=
2
2x+1
上是减函数,2x+1>1
∴t=
2
2x+1
∈(0,2)
由此可得,当a∈(0,2)时,方程a=
2
2x+1
在R上有实数根
综上所述,若函数f(x)在R上有零点,a的取值范围是(0,2).
点评:本题给出含有指数式的分式形式的函数,叫我们讨论其奇偶性并求值域.着重考查了函数的奇偶性、基本初等函数的值域求法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案