精英家教网 > 高中数学 > 题目详情
在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量的概率分布列和数学期望.
(1) (2)随机变量的概率分布列

0
1
2
3
P




                                                                       
数学期望为

试题分析:解:(1)x,y,z依次称公差大于0的等差数列的概率,即甲,乙,丙3个盒中的球数。
分别为0,1,2,此时的概率
(2)的取值范围0,1,2,3,且


.
随机变量的概率分布列

0
1
2
3
P




                                                                       
数学期望为
点评:求随机变量的分布列和数学期望是常考题型,解决这种题目关键是求出随机变量对应的概率。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若是从三个数中任取的一个数,是从四个数中任取的一个数,求为偶函数的概率;
(Ⅱ)若,是从区间任取的一个数,求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量服从正态分布,且,则等于          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.
(I)求随机变量的分布列及其数学期望E();
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;
(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)袋中装有大小相同的黑球、白球和红球共10个。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是
(1)求袋中各色球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段: ,…,后得到如下频率分布直方图.

(Ⅰ)求图中的值
(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含 80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用计算机产生的随机二元数组构成区域,求二元数组满足1的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。
⑴试求选出的3种商品中至少有一种是家电的概率;
⑵商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为元的奖金;若中两次奖,则共获得数额为元的奖金;若中3次奖,则共获得数额为元的奖金。假设顾客每次抽奖中获的概率都是,请问:商场将奖金数额m最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

同步练习册答案