精英家教网 > 高中数学 > 题目详情
高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;
(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.
(1)0.016
(2)0.6

试题分析:解.(1)分数在之间的频数为,频率为
 高一(1)班参加校生物竞赛人数为.             2分
所以分数在之间的频数为          4分
频率分布直方图中间的矩形的高为   6分
(2)设至少有一人分数在之间为事件A
之间的人编号为之间的人编号为
之间的任取两人的基本事件为:
. 共
9分
其中,至少有一个在之间的基本事件有个              10分
根据古典概型概率计算公式,得               11分
答:至少有一人分数在之间的概率                12分
点评:主要是考查了古典概型的概率、直方图的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知连续型随机变量的概率密度函数

(1)    求常数的值,并画出的概率密度曲线;

(2)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求数学期望E ( X ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知X~B(n,p),EX =8,DX =1.6,则n与p的值分别是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

哈尔滨市五一期间决定在省妇女儿中心举行中学生“蓝天绿树、爱护环境”围棋比赛,规定如下:
两名选手比赛时每局胜者得1分,负者得0分,比赛进行到有一人比对方多3分或打满7局时停止.
设某学校选手甲和选手乙比赛时,甲在每局中获胜的概率为,且各局胜负相互独立.已知
第三局比赛结束时比赛停止的概率为
(1)求的值;
(2)求甲赢得比赛的概率;
(3)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

查看答案和解析>>

同步练习册答案