分析 (1)由题意画出图象,设∠BAD=α、∠CAD=β,由三角函数的定义求出cosα、sinα的值,由β=60°-α和两角差的余弦函数求出cosβ的值,可得答案;
(2)设点C(x,y),由(1)和两角差的正弦函数求出sinβ,由三角函数的定义求出x和y,可得答案.
解答 解:(1)设∠BAD=α,∠CAD=β,
且AB=5,
由三角函数的定义得$cosα=\frac{4}{5}$,$sinα=\frac{3}{5}$,
故cosβ=cos(60°-α)═$\frac{1}{2}cosα+\frac{{\sqrt{3}}}{2}sinα=\frac{{4+3\sqrt{3}}}{10}$,
即$cos∠CAD=\frac{{4+3\sqrt{3}}}{10}$.
(2)设点C(x,y).
由(1)知sinβ=sin(60°-α)=$\frac{{\sqrt{3}}}{2}cosα-\frac{1}{2}sinα=\frac{{4\sqrt{3}-3}}{10}$,
因为AC=AB=5,
所以$x=5cosβ=\frac{{4+3\sqrt{3}}}{2}$,$y=-5sinβ=\frac{{3-4\sqrt{3}}}{2}$,
故点$C(\frac{{4+3\sqrt{3}}}{2},\frac{{3-4\sqrt{3}}}{2})$.
点评 本题考查两角差的余弦函数,两角差的正弦函数,三角函数的定义,以及变角在三角函数求值中的应用,考查化简、计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {7} | B. | {3,5} | C. | {1,3,6,7} | D. | {1,3,7} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (4,+∞) | C. | [2,4] | D. | (2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com