精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,点在直线y=x+4上。数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154,
(1)求数列{an}、{bn}的通项公式;
(2)设,数列{cn}的前n项和为Tn,求使不等式Tn对一切n∈N*都成立的最大正整数k的值;
(3)设,是否存在m∈N*,使得f(m+9)=3f(m)成立?若存在,求出m的值;若不存在,请说明理由。
解:(1)由题意,得
故当n≥2时,
注意到n=1时,
而当n=1时,n+4=5,
所以,

所以{bn}为等差数列,
于是

因此,

(2)

所以,


由于
因此Tn单调递增,


(3)
①当m为奇数时,m+9为偶数,
此时
所以,(舍去);
②当m为偶数时,m+9为奇数,
此时,
所以,(舍去);
综上,不存在正整数m,使得成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案