精英家教网 > 高中数学 > 题目详情

求证f(x)=x+数学公式的(0,1]上是减函数,在[1,+∞)上是增函数.

证明:f′(x)=1-
当x∈(0,1]时,≥1,故1-≤0,故函数f(x)=x+的(0,1]上是减函数.
当x∈[1,+∞)时,≤1,故1-≥0,故函数f(x)=x+的(0,1]上是增函数.
由上证,f(x)=x+的(0,1]上是减函数,在[1,+∞)上是增函数
分析:本题是一个证明题,可用导数法证明,先求出f(x)=x+的导数,判断导数的值在两个区间上的符号,若符号为正,此函数在这个区间上是增函数,若导数为负,则这个函数在这个区间上为减函数.
点评:本题的考点是函数单调性的判断与证明,本题采取了用导数法来证明函数单调性,其对应关系是若导数在某个区间上函数值恒大于等于0,则这个区间是这个函数的增区间,若数在某个区间上函数值恒小于等于0,则这个区间是这个函数的减区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
(b,c∈N*)
有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
1
an
)=1
,求数列{an}的通项公式;
(3)求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
(b,c∈N*)
有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
1
an
)=1
,求数列{an}的通项公式;
(3)求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案