精英家教网 > 高中数学 > 题目详情
给定函数①,②y=log2(x+1),③y=|x﹣1|,④,其中在区间(0,1)上单调递减的函数序号是 
 [     ]
A.①②
B.②③
C.③④
D.①④
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+8x+3.
(1)若函数f(x)=ax2+8x+3的图象恒在直线y=5的下方,求实数a的范围;
(2)对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5都成立.问a为何值时l(a)最大?求出这个最大的l(a),证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示直角梯形ABCD中上底CD=2,下底AB=4,高BC=1直线l与线段AB垂直相交,设A点到直线l的距离为x,直线l截梯形ABCD所得的位于l左方的图形面积为y.
(1)求函数y=f(x)解析式;
(2)在给定的坐标系内画出y=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集,其中,点列在L中,为L与y轴的交点,等差数列的公差为1,

(1)求数列的通项公式;

(2)若,令;试用解析式写出关于的函数。

(3)若,给定常数m(),是否存在,使得 ,若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省重点中学协作体高三第三次联考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x,y)(其中总能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

同步练习册答案