精英家教网 > 高中数学 > 题目详情

已知集合A={x|数学公式≥0},集合B={x|(x-a)(x-2a+1)≤0}
(1)求集合A;
(2)若A∪B=A,求实数a的取值范围.

解:(1)原式等价于(x+1)2(x-2)(x+4)≤0且x≠4,
∴A={x|-4<x≤2};
(2)解:∵A∪B=A,
∴B⊆A,
①当2a-1>a,即a>1时,B=[a,2a-1],
∴a>-4且2a-1≤2,
∴1<a≤
②当2a-1<a,即a<1时,B=[2a-1,a],
∴2a-1>-4且a≤2,
∴-<a<1.
③2a-1=a时,B={1},满足B⊆A,…(11分)
综上所述:-<a≤.…(12分)
分析:(1)将≥0转化为:(x+1)2(x-2)(x+4)≤0且x≠4,从而可求集合A;
(2)由A∪B=A,可得B⊆A,对集合B的解集需根据2a-1与a的大小关系分类讨论求其解集.
点评:本题考查高次不等式的解法,难点在于对B的解集的确定(需分类讨论),属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案