精英家教网 > 高中数学 > 题目详情
18、若-90°<α<β<90°,则α-β的范围是
(-180°,0°)
分析:先求-β的取值范围,直接利用不等式的性质求α-β的取值范围,.
解答:解:∵α<β,∴α-β<0°①;
∵-90°<α<90°,-90°<β<90°,
∴-90°<-β<90°,
∴-180°<α-β<180°②;
由①②可得,-180°<α-β<0,
故答案为:(-180°,0).
点评:本题考查了不等式的基本性质,注意同向不等式可以相加,但不能相减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若90°<θ<180°,曲线x2+y2sinθ=1表示(  )
A、焦点在x轴上的双曲线B、焦点在y轴上的双曲线C、焦点在x轴上的椭圆D、焦点在y轴上的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州三模)汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对CO2排放量超过130g/km的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km).
80 110 120 140 150
100 120 x y 160
经测算发现,乙品牌车CO2排放量的平均值为
.
x
=120
g/km.
(1)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合CO2排放量的概率是多少?
(2)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,AB=1,PA•AC=1,∠ABC=θ(0°<θ≤90°).
(1)若θ=90°,求二面角A-PC-B的大小;
(2)试求四棱锥P-ABCD的体积V的取值范围.

查看答案和解析>>

同步练习册答案