精英家教网 > 高中数学 > 题目详情
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数f(x)=ax3+bx2+cx+d(a≠0)都关于点(-
b
3a
,f(-
b
3a
))对称:
②存在三次函数有两个及两个以上的对称中心;
③存在三次函数f(x)=ax3+bx2+cx+d(a≠0),若f′(x)=0有实数解x0,则点(x0,f(x0))为函数y=f(x)的对称中心;
④若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则:g(
1
2014
)+g(
2
2014
)+g(
3
2014
)+…+g(
2013
2014
)=-1006.5
其中所有正确结论的序号是(  )
A、①②③B、①②④
C、①③④D、②③④
考点:导数的运算
专题:导数的概念及应用
分析:①根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,
由此求得三次函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心;
②③利用三次函数对称中心的定义和性质进行判断;
④函数g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心是(
1
2
,-
1
2
),得g(x)+(g(1-x)=-1,由此求得g(
1
2014
)+g(
2
2014
)+g(
3
2014
)+…+g(
2013
2014
)=-1006.5
解答: 解:∵f(x)=ax3+bx2+cx+d(a≠0),
∴f′(x)=3ax2+2bx+c,f''(x)=6ax+2b,
∵f″(x)=6a×(-
b
3a
)
+2b=0
∴任意三次函数f(x)=ax3+bx2+cx+d(a≠0)都关于点(-
b
3a
,f(-
b
3a
))对称:即①正确;
∵任何三次函数都有对称中心,且“拐点”就是对称中心,
∴存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为y=f(x)的对称中心,即③正确;
任何三次函数都有且只有一个对称中心,故②不正确;
∵函数g(x)=
1
3
x3-
1
2
x2-
5
12

∴g′(x)=x2-x,g''(x)=2x-1,
令g''(x)=2x-1=0,得x=
1
2

∵g(
1
2
)=
1
3
×(
1
2
3-
1
2
×(
1
2
2-
5
12
=-
1
2

∴函数g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心是(
1
2
,-
1
2

∴g(
1
2014
)+g(
2
2014
)+g(
3
2014
)+…+g(
2013
2014
)=-1006.5,故④正确.
故正确结论为:①③④.
故选:C
点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,求函数的值以及函数的对称性的应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定函数y=f(x)的图象如下列图中,经过原点和(1,1),且对任意an∈(0,1),由关系式an+1=f(an)得到数列{an},满足an+1>an(n∈N*),则该函数的图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

观察如图数表规律,可得从数2013到2014的箭头方向是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2•cosx在区间[-
π
2
π
2
]内的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.则P(ξ=0)=(  )
A、
5
11
B、
4
11
C、
3
11
D、
2
11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在x0处可导,则
lim
△x→0
f(x0-2h)-f(x0)
h
等于(  )
A、2f′(x0
B、-f′(-x0
C、-f′(x0
D、-2f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

设点A,B分别在直线3x-y+5=0和3x-y-13=0上运动,线段AB的中点M恒在圆x2+y2=8内,则点M的横坐标的取值范围为(  )
A、(
2
5
,2)
B、(-2,-
2
5
C、(2,
14
5
D、(-
14
5
,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+2y+6=0,直线l2:x+(a-1)y+a2-1=0.分别求a的值,使(1)l1与l2相交;(2)l1⊥l2;(3)l1与l2重合;(4)l1∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:x2-x≥6,q:2x>1,若“p∧q”与“¬p”同时为假命题,求x的取值集合.

查看答案和解析>>

同步练习册答案