精英家教网 > 高中数学 > 题目详情
执行如图所示的程序框图所表达的算法,输出的结果为(  )
A、2
B、1
C、
1
2
D、-1
考点:程序框图
专题:算法和程序框图
分析:根据框图的流程模拟运行程序,发现a值出现的周期,根据条件确定跳出循环的k值,从而确定输出的a值.
解答: 解:由程序框图知:第一次循环a=1-
1
-1
=2,k=2;
第二次循环a=1-
1
2
=
1
2
,k=3;
第三次循环a=1-
1
1
2
=-1,k=4;
第四次循环a=2,k=5.
…,
∴a值出现的周期为3,
又跳出循环的k值为2014,2013=3×671,
∴输出a=-1.
故选:D.
点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序发现a值出现的周期及确定跳出循环的k值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,长轴长为6,一条准线方程为x=9,则该椭圆的标准方程为(  )
A、
x2
36
+
y2
20
=1
B、
x2
9
+
y2
8
=1
C、
y2
36
+
x2
20
=1
D、
y2
9
+
x2
8
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
(x-a)2,x≤0
x+
1
x
+a,x>0
,若f(0)是f(x)的最小值,则a的取值范围为(  )
A、[-1,2]
B、[-1,0]
C、[1,2]
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

结论为:xn+yn能被x+y整除,令n=1,2,3,4验证结论是否正确,得到此结论成立的条件可以为(  )
A、n∈N*
B、n∈N*且n≥3
C、n为正奇数
D、n为正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx+
1
2
的零点所在的区间是(  )
A、(e-4,e-2
B、(e-2,1)
C、(1,e2
D、(e2,e4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=4sinxsin2
π
4
+
x
2
)+cos2x(x∈R).
(1)求函数f(x)的值域;
(2)若对任意x∈[
π
6
3
],都有|f(x)-m|<2成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
表1:甲流水线样本频数分布表
产品重量(克) 频数
(490,495] 6
(495,500] 8
(500,505] 14
(505,510] 8
(510,515] 4
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线  乙流水线   合计
合格品 a= b=
不合格品 c= d=
合 计 n=
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d;临界值表供参考:
P(k2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

用解析法证明:如果四边形ABCD是长方形,则对任一点M,等式|AM|2+|CM|2=|BM|2+|DM|2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

生产A,B两种产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
产品A 8 12 40 32 8
产品B 7 18 40 29 6
(Ⅰ)试分别估计产品A、产品B为正品的概率;
(Ⅱ)生产一产品件A,若是正品可盈利50元,若是次品则亏损10元;生产一件产品B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下:
①求生产5件产品B所获得的利润不少于300元的概率;
②求生产1件产品A和1件产品B所得的总利润为30元或90元的概率.

查看答案和解析>>

同步练习册答案